290 research outputs found

    Evidence for variability time-scale-dependent UV/X-ray delay in Seyfert 1 AGN NGC 7469

    Get PDF
    MP acknowledges Royal Society-SERB Newton International Fellowship support funded jointly by the Royal Society, UK and the Science and Engineering Board of India (SERB) through Newton–Bhabha Fund. IMcH acknowledges support from a Royal Society Leverhulme Trust Research Fellowship LT160006 and from STFC grant ST/M001326/1. EMC gratefully acknowledges support from the National Science Foundation through award number AST-1909199. KH acknowledges support from STFC grant ST/R000824/1.Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220-1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝  λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∌0.38 d from the standard disc delay prediction.Publisher PDFPeer reviewe

    Linearly scaling direct method for accurately inverting sparse banded matrices

    Get PDF
    In many problems in Computational Physics and Chemistry, one finds a special kind of sparse matrices, termed "banded matrices". These matrices, which are defined as having non-zero entries only within a given distance from the main diagonal, need often to be inverted in order to solve the associated linear system of equations. In this work, we introduce a new O(n) algorithm for solving such a system, being n X n the size of the matrix. We produce the analytical recursive expressions that allow to directly obtain the solution, as well as the pseudocode for its computer implementation. Moreover, we review the different options for possibly parallelizing the method, we describe the extension to deal with matrices that are banded plus a small number of non-zero entries outside the band, and we use the same ideas to produce a method for obtaining the full inverse matrix. Finally, we show that the New Algorithm is competitive, both in accuracy and in numerical efficiency, when compared to a standard method based in Gaussian elimination. We do this using sets of large random banded matrices, as well as the ones that appear when one tries to solve the 1D Poisson equation by finite differences.Comment: 24 pages, 5 figures, submitted to J. Comp. Phy

    Physical Constraints from Near-infrared Fast Photometry of the Black Hole Transient GX 339–4

    Get PDF
    We present results from the first multi-epoch X-ray/IR fast-photometry campaign on the black hole transient GX 339–4, during its 2015 outburst decay. We studied the evolution of the power spectral densities finding strong differences between the two bands. The X-ray power spectral density follows standard patterns of evolution, plausibly reflecting changes in the accretion flow. The IR power spectral density instead evolves very slowly, with a high-frequency break consistent with remaining constant at 0.63 ± 0.03 Hz throughout the campaign. We discuss this result in the context of the currently available models for the IR emission in black hole transients. While all models will need to be tested quantitatively against this unexpected constraint, we show that an IR-emitting relativistic jet that filters out the short-timescale fluctuations injected from the accretion inflow appears as the most plausible scenario

    Scalable Verification of Linear Controller Software

    Get PDF
    We consider the problem of verifying software implementations of linear time-invariant controllers against mathematical specifications. Given a controller specification, multiple correct implementations may exist, each of which uses a different representation of controller state (e.g., due to optimizations in a third-party code generator). To accommodate this variation, we first extract a controller\u27s mathematical model from the implementation via symbolic execution, and then check input-output equivalence between the extracted model and the specification by similarity checking. We show how to automatically verify the correctness of C code controller implementation using the combination of techniques such as symbolic execution, satisfiability solving and convex optimization. Through evaluation using randomly generated controller specifications of realistic size, we demonstrate that the scalability of this approach has significantly improved compared to our own earlier work based on the invariant checking method

    Fast infrared variability from the black hole candidate MAXI J1535-571 and tight constraints on the modelling

    Get PDF
    We present the results regarding the analysis of the fast X-ray/infrared (IR) variability of the black hole transient MAXI J1535-571. The data studied in thiswork consist of two strictly simultaneous observations performed with XMM-Newton (X-rays: 0.7-10 keV), VLT/HAWK-I (Ks band, 2.2 ÎŒm) andVLT/VISIR (M and PAH2_2 bands, 4.85 and 11.88 ÎŒm, respectively). The cross-correlation function between the X-ray and near-IR light curves shows a strong asymmetric anticorrelation dip at positive lags. We detect a near-IR QPO (2.5 σ) at 2.07 +/- 0.09 Hz simultaneously with an X-ray QPO at approximately the same frequency (f0 = 2.25 +/- 0.05). From the cross-spectral analysis, a lag consistent with zero was measured between the two oscillations. We also measure a significant correlation between the average near-IR and mid-IR fluxes during the second night, but find no correlation on short time-scales. We discuss these results in terms of the two main scenarios for fast IR variability (hot inflow and jet powered by internal shocks). In both cases, our preliminary modelling suggests the presence of a misalignment between the disc and jet.</p

    NICER observations reveal that the X-ray transient MAXI J1348-630 is a black hole X-ray binary

    Get PDF
    We studied the outburst evolution and timing properties of the recently discovered X-ray transient MAXI J1348-630 as observed with NICER. We produced the fundamental diagrams commonly used to trace the spectral evolution, and power density spectra to study the fast X-ray variability. The main outburst evolution of MAXI J1348-630 is similar to that commonly observed in black hole transients. The source evolved from the hard state (HS), through hard- and soft-intermediate states, into the soft state in the outburst rise, and back to the HS in reverse during the outburst decay. At the end of the outburst, MAXI J1348-630 underwent two reflares with peak fluxes approximately one and two orders of magnitude fainter than the main outburst, respectively. During the reflares, the source remained in the HS only, without undergoing any state transitions, which is similar to the so-called 'failed outbursts'. Different types of quasi-periodic oscillations (QPOs) are observed at different phases of the outburst. Based on our spectral-timing results, we conclude that MAXI J1348-630 is a black hole candidate

    NICER observations reveal that the X-ray transient MAXI J1348-630 is a Black Hole X-ray binary

    Get PDF
    We studied the outburst evolution and timing properties of the recently discovered X-ray transient MAXI J1348-630 as observed with NICER. We produced the fundamental diagrams commonly used to trace the spectral evolution, and power density spectra to study the fast X-ray variability. The main outburst evolution of MAXI J1348-630 is similar to that commonly observed in black hole transients. The source evolved from the hard state, through hard- and soft-intermediate states, into the soft state in the outburst rise, and back to the hard state in reverse during the outburst decay. At the end of the outburst, MAXI J1348-630 underwent two reflares with peak fluxes ~1 and ~2 orders of magnitude fainter than the main outburst, respectively. During the reflares, the source remained in the hard state only, without undergoing any state transitions, which is similar to the so-called "failed outbursts". Different types of quasi-periodic oscillations (QPOs) are observed at different phases of the outburst. Based on our spectral-timing results, we conclude that MAXI J1348-630 is a black hole candidate.Comment: 12 pages, 8 figures, 1 table, accepted for publication in MNRA

    The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis

    Get PDF
    Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their disruption, or lysis, to release the expressed proteins. We compare three high-throughput chemical lysis methods to sonication, using a robotic platform and methodologies developed in our laboratory [1]. Under the same expression conditions, all lysis methods varied in the degree of released soluble proteins. With a set of 96 test proteins, we used our split GFP to quantify the soluble and insoluble protein fractions after lysis. Both the amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyseÂź were well correlated with sonication. Two other methods, BugbusterÂź and lysozyme, did not correlate well with sonication. Considering the effects of lysis methods on protein solubility is especially important when accurate protein solubility measurements are needed, for example, when testing adjuvants, growth media, temperature, or when establishing the effects of truncation or sequence variation on protein stability

    Cost-effective design & development of a prosthetic hand

    Get PDF
    The prosthetic hand is used to replace a missing part of a hand, which may be lost through trauma, disease, or congenital conditions in order to restore the normal functions of the hand. The state of the art design and development of prosthetic hands has been well studied and documented. The modern prosthetic hands which are computer-controlled via the means of electromyogram (EMG) signals are very helpful for amputees; however, they are expensive, not always available for low-income populations. This study presents a cost-effective solution for innovative design and development of a prosthetic hand for a patient who lost both hands due to the work accident. Design concepts of the prosthetic hand were successfully developed and tested. Different strategies for cost-effective design and development of the high-value added prosthetic hand are also discussed, including mass-customization and design for additive manufacturing
    • 

    corecore